Friday, November 22, 2024
Home Neuroscience Discovery holds promise to restore function in people with paralysis and neurological diseases

Discovery holds promise to restore function in people with paralysis and neurological diseases

by Medical Xpress
0 comment


New research by physician scientists at The Ohio State University Wexner Medical Center finds a recently discovered type of immune cell can regrow nerve fibers in the central nervous system, which may lead to effective treatments for currently incurable neurological diseases and spinal cord injuries. Credit: The Ohio State University Wexner Medical Center

In a new study, neuroscience researchers at The Ohio State University have discovered a special type of human white blood cell that has the potential to regrow nerve fibers.

The study findings, published in the journal Nature Immunology, mark a significant leap forward in medical science.

“Dying nerve cells are typically not replaced, and damaged do not normally regrow, leading to permanent neurological disabilities,” said corresponding and senior author Benjamin Segal, MD, professor and chair of the department of neurology at The Ohio State University Wexner Medical Center and College of Medicine.

Segal’s team found that can be transformed into powerful healing agents. By stimulating these cells with specific molecules in the lab, the team was able to turn them into pro-regenerative cells that can help damaged nerve cells survive and regrow.

“Our ultimate goal is to develop treatments using these special cells, to reverse damage in the optic nerve, brain, and , thereby restoring lost neurological functions,” said Segal, who is also director of Ohio State’s Neuroscience Research Institute.

Nerve damage from spinal cord, or brain injuries, and degenerative neurological diseases such as ALS, Alzheimer’s and multiple sclerosis, has long been believed to be permanent. However, four years ago, Segal’s team made a breakthrough in mice, sparking hope for millions affected by these conditions.







In a new study, neuroscience researchers at The Ohio State University have discovered a special type of human white blood cell that has the potential to regrow nerve fibers. Credit: The Ohio State University Wexner Medical Center

“Our new study shows that patients’ own cells can likely be used to deliver safe and effective treatments for these devastating conditions,” said co-first author Andrew Jerome, Ph.D., a member of Segal’s research team.

In their recent study, the team generated pro-regenerative cells from the bone marrow of eight different human donors. Remarkably, cells from all eight donors successfully drove human nerve cells to regenerate nerve fibers. These cells even tripled the survival rate of stressed . This suggests they can help slow or prevent progression of degenerative neurological conditions, as well as reverse injury and restore function.

“With the success of these lab experiments, our focus now shifts to bringing these new cell therapy treatments to the patients who need them. We believe these cells can be extracted from a patient, stimulated and grown to large numbers in the lab and reinfused at the site of injury or disease to regrow brain and spinal nerve fibers,” said co-first author Andrew Sas, MD, Ph.D., assistant professor of neurology at Ohio State.

Segal’s team continues to push these advancements forward. The next steps are to develop the most efficient methods of growing and delivering these cells so clinical trials can begin. Treatments that bring improvements for patients that once seemed impossible are now on the horizon, Segal said.

More information:
Andrew D. Jerome et al, Cytokine polarized, alternatively activated bone marrow neutrophils drive axon regeneration, Nature Immunology (2024). DOI: 10.1038/s41590-024-01836-7

Citation:
Discovery holds promise to restore function in people with paralysis and neurological diseases (2024, June 21)
retrieved 21 June 2024
from https://medicalxpress.com/news/2024-06-discovery-function-people-paralysis-neurological.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

You may also like

Leave a Comment

Edtior's Picks

Latest Articles

All Rights reserved, site designed by Yellohost.co.za